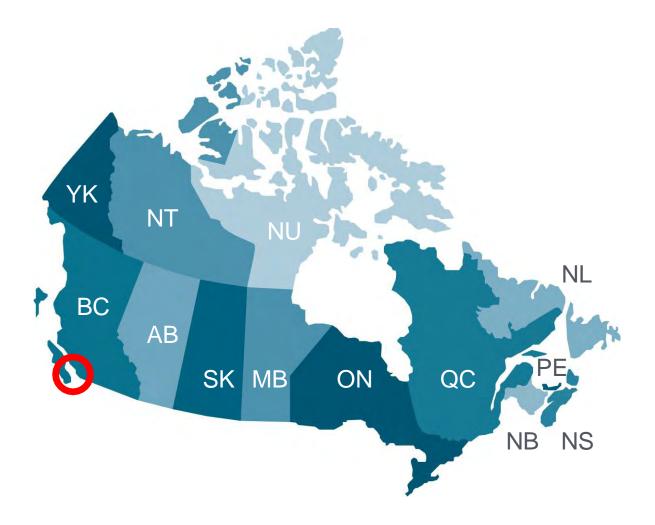
14 December 2018 University of Northumbria

Superwood How forestry and timber can drive a low-carboneconomy

Session 3 Building more, and more creatively, with wood

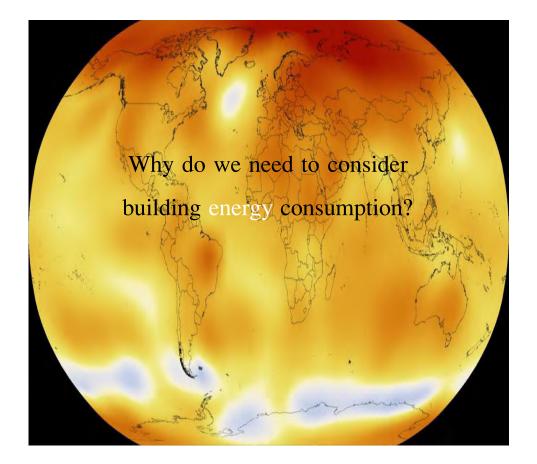
#Superwood



Lessons from British Columbia

A high-performance, wood-based building industry to drive a low-carbon economy

Ryder


Ryder

Duchar

408ppm C02eq

UN CLIMATE CHANGE CONFERENCE – PARIS COP21 2015

CO ₂ -eq Con- centrations in 2100 (ppm CO ₂ -eq) [†] Category label (conc. range)	Subcategories	Relative position of the RCPs ^d	Change in CO ₂ -eq emissions compared to 2010 (in %) ^c		Likelihood of staying below a specific temperature level over the 21st cen- tury (relative to 1850–1900) ^{d, e}			
			2050	2100	1.5°C	2°C	3°C	4°C
.420	0-	less timited much	n of todividual a	l andel studies her	l in analogad land	halow 120 and	<u>(0. col</u>	
450 (430 to 480)	Total range ^{a, g}	RCP2.6	-72 to -41	-118 to -78	More unlikely than likely	Likely		
500 (480 to 530)	530 ppm CO ₂ -eq		-57 to -42	-107 to -73	- Unlikely	than not	Likely	Likely
	Overshoot of 530 ppm CO ₂ -eq		-55 to -25	-114 to -90		About as likely as not		
550 (530 to 580)	No overshoot of 580 ppm CO ₂ -eq		-47 to -19	81 to59		More unlikely than likely ' Unlikely		
	Overshoot of 580 ppm CO ₂ -eq		-16 to 7	-183 to -86				
(580 to 650)	Total range		-38 to 24	-134 to -50				
(650 to 720)	Total range	RCP4.5	-11 to 17	-54 to -21			More likely than not	
(720 to 1000) ^b	Total range	RCP6.0	18 to 54	-7 to 72	Unlikely *		More unlikely than likely	
>1000 ^b	Total range	RCP8.5	52 to 95	74 to 178		Unlikely h	Unlikely	More unlikely than likely

Table SPM.1 Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

PARIS CLIMATE CONFERENCE – COP21 2015

Agreement to target climate change temperature increase to 1.5 degrees

cleanBC

32

cleanBC our nature. our power. our future.

Low Carbon Buildings Innovation Program

Starting in 2019, the Province will offer new incentives for builders, developers and manufacturers to stimulate the development and demonstration of innovative, low-carbon building solutions. The Low Carbon Buildings Innovation Program will accelerate the availability, acceptance and affordability of high performance solutions such as advanced building designs, advanced construction methods and ultraefficient building components.

Funding will be available for projects in three categories, through bi-annual competitive calls:

- Research building solutions that show promise but may require further innovation before being commercialized (e.g. vacuum insulated wall panels and windows, natural gas heat pumps);
- Commercialization building solutions that have been tested and are ready to be scaled up for wider application (e.g. high-performance prefabricated external insulation systems); and
- Demonstration building solutions currently available in the marketplace that require demonstration to build industry capacity and public acceptance (e.g. such as net-zero energy ready construction).

Along with stimulating the development of new ideas, the program will prove to the market that existing technologies work and deliver their intended benefits. This will increase the capacity of B.C.-based industries, generate consumer confidence, and help to lower the costs of new technologies and building approaches over time.

WOOD FIRST

B.C. wood is a natural choice for low carbon building. Wood is the only building material grown by sunlight, with a lighter carbon footprint than other common building materials, and is much less greenhouse gas intensive on a life cycle basis. It's also the only structural building material with third-party certification systems to verify that products have come from a sustainably managed resource.

Through its Wood First program, the Province encourages the forest industry, researchers and design professionals to innovate in B.C.'s built environment through value-added wood products – helping to grow local and global markets, while promoting climate-friendly construction and supporting our forest sector.

"A partnership between the primary industry, manufacturers and the provincial and federal governments"

Principal Activities

Building Codes, Design Standards, Regulations

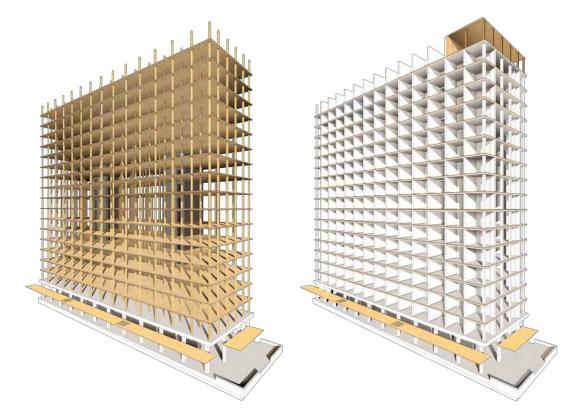
Technical Information and Transfer

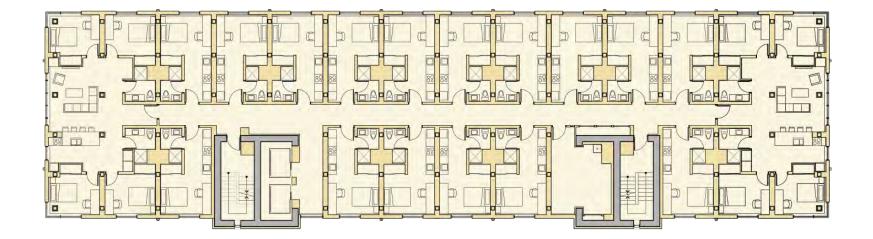
Current and future practitioner education

Recognition Programmes

Communications

Since 1998


Directly influence 1800 project Incremental wood sales of \$1.1 Billion


Annual Goals 2017

Achieved

235 projects influenced	238
128 million bd. ft. equiv. (lumber)	126
\$151 million in wood sales	\$163
45,000 education hours	47,500
19,500 construction professionals reached	20,100
Implemented Education Plan	\checkmark
Initiated Low-Rise Commercial Buildings Program	\checkmark
Supported Tall Wood Buildings EOI	\checkmark
Mid-Rise - Built or at Design/Conceptual Stage	585

Ryder

Everything architecture

Superwood Lessons from Scotland

Neil Sutherland MAKAR

MAKAR

0

- 150 home deliveries
 - 25+ years

NE.

- 35 people
 - 15 20 home deliveries / pa £3.5M turnover

MAKAR

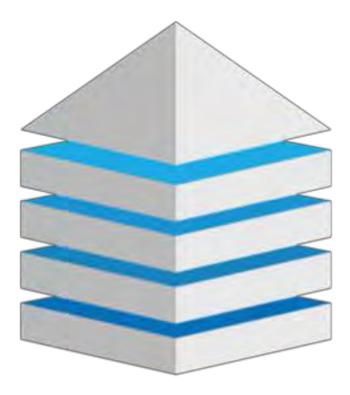
MAKAR

T

Timber Frame Housing 80% Scotland England & Wales 15% MAKAR

Modern Suburbia: Anywhere / Everywhere

Ins Car Pa


EB

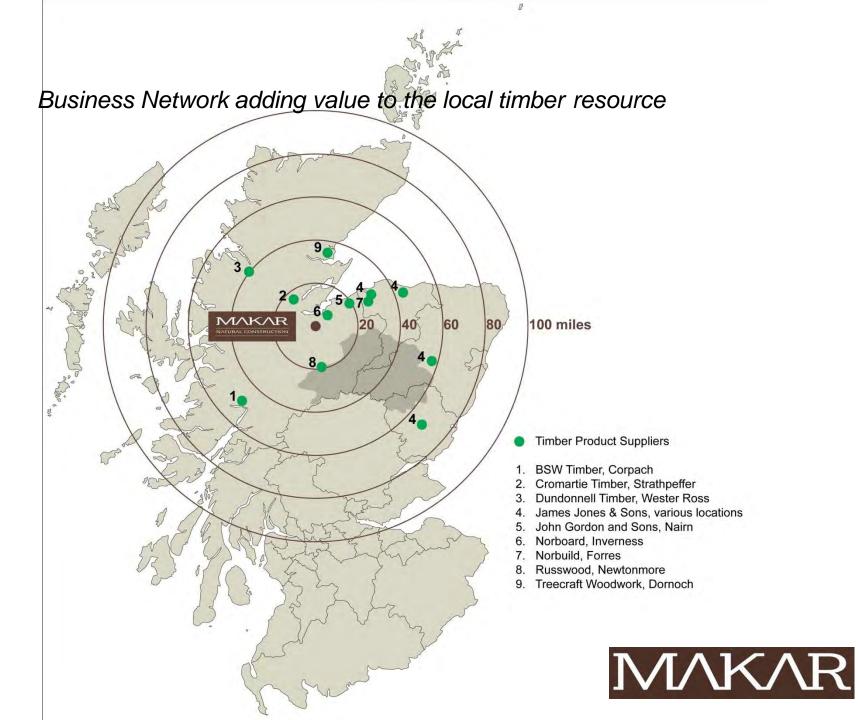
A New Standard in House Delivery and Place Making

The 200 year house Energy Positive – generate more than used Carbon Negative – contributing to the solution Representing a Long-term, Quality Driven Agenda

MAKAR

OFFSITE SOLUTIONS SCOTLAND

Respond to the Existing Resource and Help Shape its Future


Ø.

NZ-NO

Timber & Timber Products

- Four Commercial Softwood Species -Pine, Spruce, Fir and Larch
- We use several species per building
- Other minor Species: Hemlock, Cedar, Cyprus

MAKAR Workshop - 2012

三年1月 日本1月

Ş

.

-

00

BREAD

Off-site delivered Housing:

60%

25%

20%

SwedenNetherlands

- Japan

- UK, USA etc, less than 5%

Timber Product Development

Chiefs

Timber Product & Process Development:

Engineered Components; Glu-lam, CLT, Dowel-lam External & Internal Fit-out; Added Value Components; Modified timber, Wood Fibre Insulation etc Integrated Off-site &On-site Design & Delivery

Circular Economy R&D MAKAR Serviced Modules

-

E C

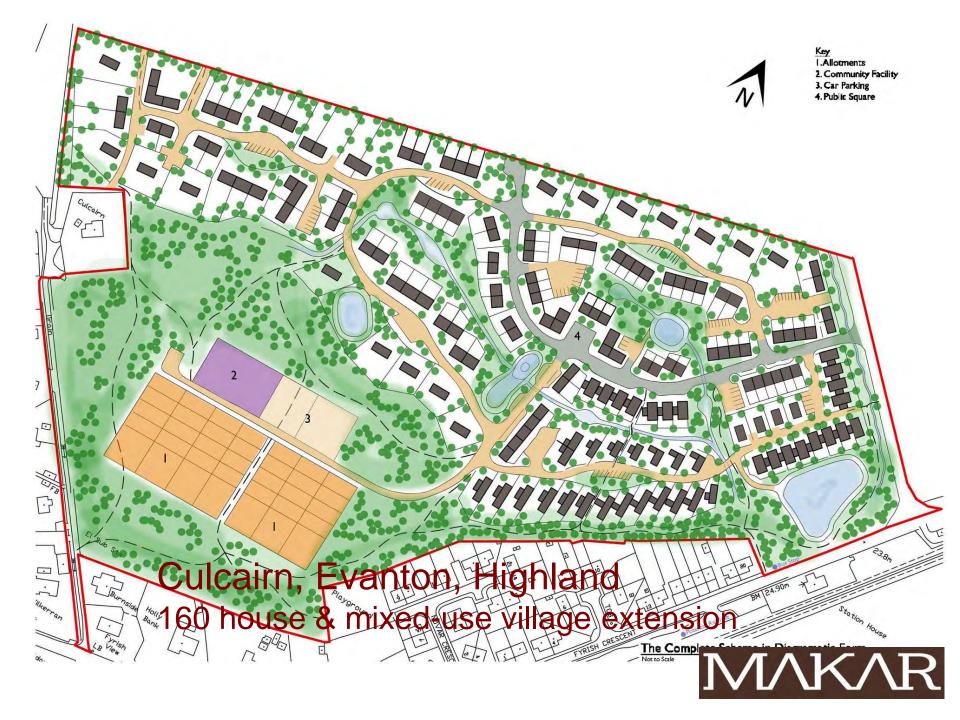
4 Homes at Fodderty, Dingwall - 2014

Carbon Measurement

Innovate UK support, Partner UEA
Energy and Carbon Assessment for a live project -Units 1 and 2 at Fodderty
Creation of a lifecycle energy and carbon model that MAKAR can use for other live projects

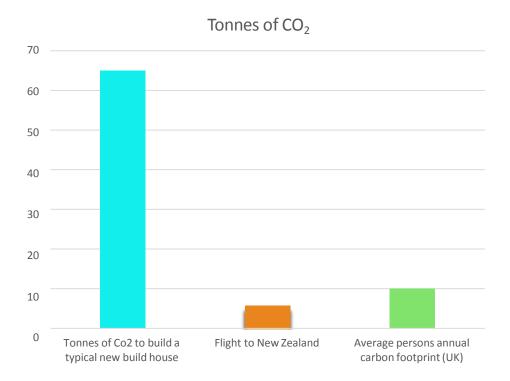
 Carbon removed from the biosphere in the Project Delivery

論

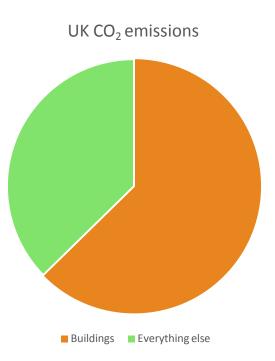


Forestry Hub – Grosvenor Estate, Delivery 2019

www.makar.co.uk neil@makar.co.uk @makarneil @MAKARhomes

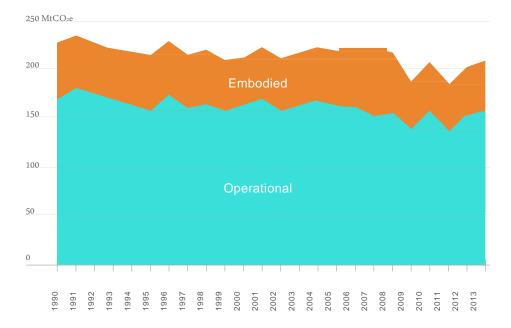


CITU


How timber unlocks the carbon negative home

Robert Allen

We need more homes. But they take a lot of $\mathrm{CO}_2\,\mathrm{to}$ build.



Buildings cause two thirds of the UK's CO_{2} emissions.

Building emissions aren't going down.

Built environment emissions 1990-2013

Timber unlocks carbon negative building

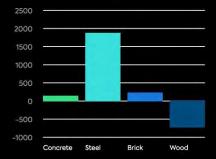
citu

The Citu Home

Built to tackle the greatest challenge of our lifetime

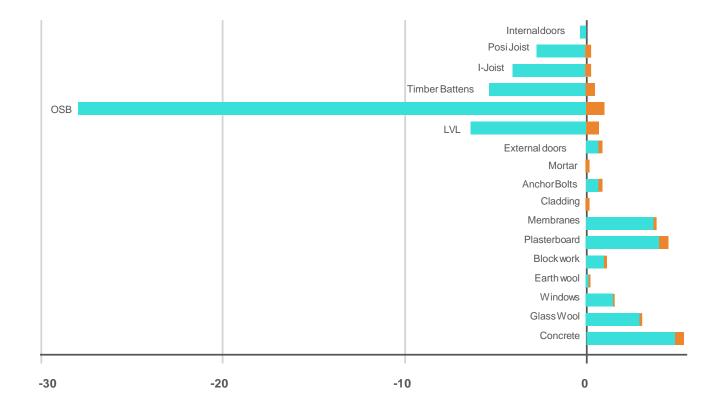
World-changing design

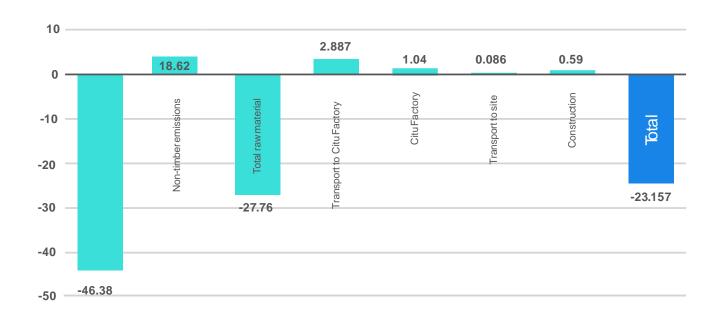
The Citu Home is designed for our time. It's built to tackle climate change and reduce the carbon emissions produced by the people who live in it. It combines Scandinavian design with the latest in sustainable technology, to create an incredible living space that is among the most energy-efficient houses in the world.



Timber frame. Built for the future

Strong, light and completely renewable, wood is a carbon negative material, storing one tonne of CO2 per cubic meter of wood used. Building any other way just isn't sustainable.

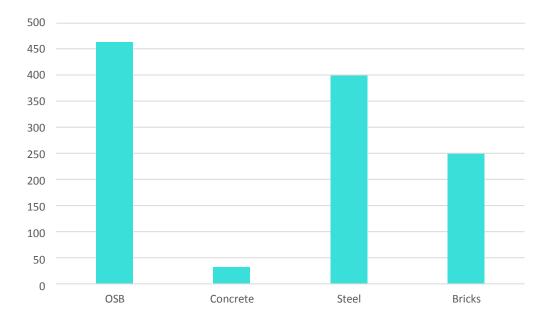

Kg of CO2 produced (or stored) to create each tonne of building materials



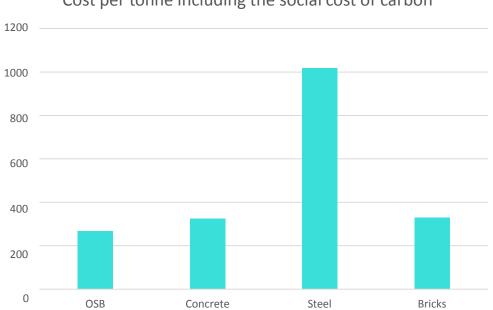
For every tree used we plant 3 in its place

Tonnes of CO2 emitted/sequestered from production of raw materials and transport

Embodies Carbon Emissions - Cradle to Practical Completion



Delivering at scale


A State A

Putting a cost on carbon

Building materials - cost per tonne

Creating a level playing field puts timber in the lead

Cost per tonne including the social cost of carbon

Buying time for **BECCS**:

Building with wood is a vital bridging technology to reaching a net zero carbon world

Negative emissions are required in order for us to meet our targets

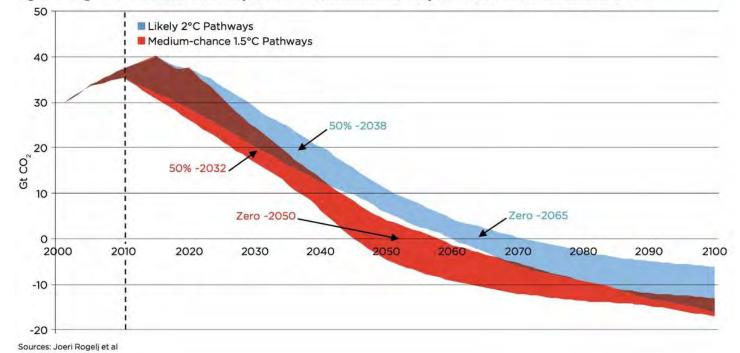


Figure 1: Range of Global Emissions Pathways in Scenarios Consistent with Likely Chance of 2°C or Medium Chance of 1.5°C¹⁸

Creating the carbon negative home

- Build with biomass
- Put a price on carbon
- Create a thermos not a hot plate
- Heat with renewables
- Decommission with BECCS

CITU

How timber unlocks the carbon negative home

Thank you.

Superwood How forestry and timber can drive a low-carboneconomy

Panel discussion - your questions

#Superwood

Supervood How forestry and timber can drive a low-carboneconomy

Coffee break back at 3.10pm

#Superwood

Supervood How forestry and timber can drive a low-carboneconomy

Session 4 Joining the dots – round-table discussion

#Superwood

Confor Premoting forestry and wood

Sponsored by

Wood for Good

Superwood

 What two positives do you take away today?
 What is biggest barrier to low-carbon economy in North-East – & how do we overcome it?

#Superwood

Supervood How forestry and timber can drive a low-carboneconomy

Feedback from round tables: email feedback to stefanie.kaiser@confor.org.uk

